Office Closure: Dec 25, 2023, to Jan 1, 2024. Order by Dec 15 for 2023 shipping. Happy holidays from FUTEK!
Our definition of a force transducer may be a bit different than those of other sensor manufacturers. At FUTEK, we define a force transducer as a load cell intended for embedded, OEM-style applications.
Our force transducers, just like our load cells, contain a full-bridge strain gauge configuration. However, the wiring is exposed on our force transducers, requiring careful handling and precautions while mounting the sensor into your desired application. The sensors themselves are very thin, containing the full-bridge and all associated wiring on a flat plate.
We currently produce one force transducer, our FFP350. It is a flat plate with an "Archimedean" style cutout in the center which behaves much like a spring. Strain gauges attached to the plate measure the force applied on the center, in both tension and compression. Its small size makes it ideal for placing in small spaces.
By definition, force sensor is a type of transducer, specifically a force transducer. It converts an input mechanical force such as load, weight, tension, compression or pressure into another physical variable, in this case, into an electrical output signal that can be measured, converted and standardized. As the force applied to the force sensor increases, the electrical signal changes proportionally.
Transducers became an essential element in many industries from Automotive, High precision manufacturing, Aerospace & Defense, Industrial Automation, Medical & Pharmaceuticals and Robotics where reliable and high precision measurement is paramount. Most recently, with the advancements in Collaborative Robots (Cobots) and Surgical Robotics, many novel force measurement applications are emerging.
Firstly, we need to understand the underlying physics and material science behind the straing force measurement working principle, which is the strain gauge (sometimes referred to as Strain gage). Metal foil strain gage is a sensor whose electrical resistance varies with applied force. In other words, it converts (or transduces) force, pressure, tension, compression, torque, weight, etc… into a change in electrical resistance, which can then be measured.
Strain gauges are electrical conductors tightly attached to a film in a zigzag shape. When this film is pulled, it — and the conductors — stretches and elongates. When it is pushed, it is contracted and gets shorter. This change in shape causes the resistance in the electrical conductors to also change. The strain applied in the load cell can be determined based on this principle, as strain gauge resistance increases with applied strain and diminishes with contraction.
Structurally, a force sensor load cell is made of a metal body (also called flexure) to which foil strain gauges are bonded. The sensor body is usually made of aluminum or stainless steel, which gives the sensor two important characteristics: (1) provides the sturdiness to withstand high loads and (2) has the elasticity to minimally deform and return to its original shape when the force is removed.
When force (tension or compression) is applied, the metal body acts as a “spring” and is slightly deformed, and unless it is overloaded, it returns to its original shape. As the flexure deforms, the strain gage also changes its shape and consequently its electrical resistance, which creates a differential voltage variation through a Wheatstone Bridge circuit. Thus, the change in voltage is proportional to the physical force applied to the flexure, which can be calculated via the load cell circuit voltage output.
These strain gauges are arranged in what is called a Wheatstone Bridge Circuit (see animated diagram). This means that four strain gages are interconnected as a loop circuit (load cell circuit) and the measuring grid of the force being measured is aligned accordingly.
The strain gauge bridge amplifiers (or load cell signal conditioners) provide regulated excitation voltage to the load cell circuit and convert the mv/V output signal into another form of signal that is more useful to the user. The signal generated by the strain gage bridge is low strength signal and may not work with other components of the system, such as PLC, data acquisition modules (DAQ), computers, or microprocessors. Some application requires a local signal readout, also known as load cell indicator. Thus, sensor signal conditioner functions include excitation voltage, noise filtering or attenuation, signal amplification, and output signal conversion.
Furthermore, the change in the amplifier voltage output is calibrated to be linearly proportional to the Newtonian force applied to the flexure, which can be calculated via the load cell circuit voltage equation.
An important concept regarding load cells is sensitivity and accuracy. Sensor accuracy can be defined as the smallest amount of force that can be applied to the sensor body required to cause a linear and repeatable variation in the voltage output. The higher the load cell accuracy, the better, as it can consistently capture very sensible force variations. In applications like high precision factory automation, surgical robotics, aerospace, load cell linearity is paramount in order to accurately feed the PLC or DAQ control system with the accurate measurement. Some of our Universal Pancake Load Cells presents Nonlinearity of ±0.1% (of Rated Output) and Nonrepeatability of ±0.05% RO.
Metal foil strain gauge force transducers are the most common technology, given its high accuracy, long term reliability, variety of shapes and sensor geometry and cost-effectiveness when compared to other measurement technologies. Also, strain gage sensors are less affected by temperature variations.
Although there several technologies to measuring force, we will focus on the most common type of load cell: metal foil strain gauge. Within the types of force transducers, there are a variety of body shapes and geometries, each one catering to distinct applications. Get to know them if you want to buy load cell:
We understand that choosing the right load transducer is a daunting task, as there is no real industry standard on how you go about selecting one. There are also some challenges you may encounter, including finding the compatible amplifier or signal conditioner or requiring a custom product that would increase the product’s delivery time.
To help you select your sensor, FUTEK developed an easy to follow, 5-Steps guide. Here is a glimpse to help you narrow down your choices. Check out our “Important Considerations in Selecting a force measurement sensor” complete guide for further information.
For more details on our 5-Steps Guide, please visit our “How to choose a Force Measurement Sensor” for complete guidelines.