What is a load cell, what are the different types of load cells and how do they work in force measurement? Get to know the functionalities and capabilities of various load cells, also known as force transducers, in this comprehensive guide.
Load Cell Sensor manufactured in US by FUTEK Advanced Sensor Technology (FUTEK), a leading manufacturer producing a huge selection of Force Transducers, utilizing one of the most advanced technologies in the Sensor Industry: Metal foil strain gauge technology. A Force Sensor is defined as a transducer that converts an input mechanical load, weight, tension, compression or pressure into an electrical output signal (load cell definition). Force Sensors are also commonly known as Force Transducer. There are several types of load cells based on size, geometry and capacity.
What is a loadcell sensor? By definition, load cell (or loadcell) is a type of transducer, specifically a force transducer. It converts an input mechanical force such as load, weight (aka weight sensors), tension, compression or pressure (aka pressure sensors) into another physical variable, in this case, into an electrical output signal that can be measured, converted and standardized. As the force applied to the force sensor increases, the electrical signal changes proportionally.
Force Transducers became an essential element in many industries from Automotive, High precision manufacturing, Aerospace & Defense, Industrial Automation, Medical & Pharmaceuticals and Robotics where reliable and high precision force measurement is paramount. Most recently, with the advancements in Collaborative Robots (Cobots) and Surgical Robotics, many novel force measurement applications are emerging.
Firstly, we need to understand the underlying physics and material science behind the load cell working principle, which is the strain gauge (sometimes referred to as Strain gage). Metal foil strain gage is a material whose electrical resistance varies with applied force. In other words, it converts (or transduces) force, pressure, tension, compression, torque, weight, etc… into a change in electrical resistance, which can then be measured. So, metal foil strain gauge is the building block of force sensor working principle.
Strain gauges are electrical conductors tightly attached to a film in a zigzag shape. When this film is pulled, it – and the conductors – stretches and elongates. When it is pushed, it is contracted and gets shorter. This change in shape causes the resistance in the electrical conductors to also change. The strain applied in the load cell can be determined based on this principle, as strain gauge resistance increases with applied strain and diminishes with contraction.
Structurally, a force sensor (or transducer) is made of a metal body (also called flexure) to which foil strain gauges are bonded. The sensor body is usually made of aluminum or stainless steel, which gives the sensor two important characteristics: (1) provides the sturdiness to withstand high loads and (2) has the elasticity to minimally deform and return to its original shape when the force is removed.
When force (tension or compression) is applied, the metal body acts as a “spring” and is slightly deformed, and unless it is overloaded, it returns to its original shape. As the flexure deforms, the strain gage also changes its shape and consequently its electrical resistance, which creates a differential voltage variation through a Wheatstone Bridge circuit. Thus, the change in voltage is proportional to the physical force applied to the flexure.
These strain gauges are arranged in what is called a Wheatstone Bridge Circuit (see load cell circuit animated diagram). This means that four strain gages are interconnected as a loop circuit and the measuring grid of the force being measured is aligned accordingly.
The strain gauge bridge amplifiers (or load cell signal conditioners) provide regulated excitation voltage to the load cell Wheatstone bridge and convert the mv/V output signal into another form of signal that is more useful to the user. The signal generated by the strain gage bridge is low strength signal and may not work with other components of the system, such as PLC, data acquisition modules (DAQ), computers, or microprocessors. Thus, force sensor signal conditioner functions include excitation voltage, noise filtering or attenuation, signal amplification, and output signal conversion.
Furthermore, the change in the strain gauge amplifier voltage output is calibrated to be linearly proportional to the Newtonian force applied to the flexure.
An important concept regarding force transducers is load cell sensitivity and accuracy. Force Sensor accuracy can be defined as the smallest amount of force that can be applied to the sensor body required to cause a linear and repeatable variation in the voltage output. The higher the load cell accuracy, the better, as it can consistently capture very sensible force variations. In applications like high precision factory automation, surgical robotics, aerospace, load cell linearity is paramount in order to accurately feed the PLC or DAQ control system with the accurate force measurement. Some of our Universal Pancake Load Cells presents Nonlinearity of ±0.1% (of Rated Output) and Nonrepeatability of ±0.05% RO.
Metal foil strain gauge load cell sensors are the most common technology, given its high accuracy, long term reliability, variety of shapes and sensor geometry and cost-effectiveness when compared to other force measurement technologies. Also, strain gage sensors are less affected by temperature variations.
Although there several technologies to measuring force, we will focus on the most common type of load cell: metal foil strain gauge. Within the types of force sensors, there are a variety of body shapes and geometries, each one catering to distinct applications. Get to know them if you want to buy load cell:
We understand that choosing the right load transducer is a daunting task, as there is no real industry standard on how you go about selecting load cells for sale. There are also some challenges you may encounter, including finding the compatible amplifier or signal conditioner or requiring a custom product that would increase the product’s delivery time.
To help you select your force sensor, FUTEK developed an easy to follow, 5-Steps guide. Here is a glimpse to help you narrow down your choices. Check out our “Important Considerations in Selecting a Load Cell” complete guide for further information.
For more details on our 5-Steps Guide, please visit our “How to choose a Load cell” for complete guidelines.